Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 9(4)2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33920979

RESUMO

Survival of the pathogenic yeast Candida albicans depends upon assimilation of fermentable and non-fermentable carbon sources detected in host microenvironments. Among the various carbon sources encountered in a human body, glucose is the primary source of energy. Its effective detection, metabolism and prioritization via glucose repression are primordial for the metabolic adaptation of the pathogen. In C. albicans, glucose phosphorylation is mainly performed by the hexokinase 2 (CaHxk2). In addition, in the presence of glucose, CaHxK2 migrates in the nucleus and contributes to the glucose repression signaling pathway. Based on the known dual function of the Saccharomyces cerevisiae hexokinase 2 (ScHxk2), we intended to explore the impact of both enzymatic and regulatory functions of CaHxk2 on virulence, using a site-directed mutagenesis approach. We show that the conserved aspartate residue at position 210, implicated in the interaction with glucose, is essential for enzymatic and glucose repression functions but also for filamentation and virulence in macrophages. Point mutations and deletion into the N-terminal region known to specifically affect glucose repression in ScHxk2 proved to be ineffective in CaHxk2. These results clearly show that enzymatic and regulatory functions of the hexokinase 2 cannot be unlinked in C. albicans.

2.
FEMS Yeast Res ; 19(4)2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31210264

RESUMO

Glucose is the preferred nutrient for most living cells and is also a signaling molecule that modulates several cellular processes. Glucose regulates the expression of glucose permease genes in yeasts through signaling pathways dependent on plasma membrane glucose sensors. In the yeast Kluyveromyces lactis, sufficient levels of glucose induction of the low-affinity glucose transporter RAG1 gene also depends on a functional glycolysis, suggesting additional intracellular signaling. We have found that the expression of RAG1 gene is also induced by hypoxia in the presence of glucose, indicating that glucose and oxygen signaling pathways are interconnected. In this study we investigated the molecular mechanisms underlying this crosstalk. By analyzing RAG1 expression in various K. lactis mutants, we found that the bHLH transcriptional activator Sck1 is required for the hypoxic induction of RAG1 gene. The RAG1 promoter region essential for its hypoxic induction was identified by promoter deletion experiments. Taken together, these results show that the RAG1 glucose permease gene is synergistically induced by hypoxia and glucose and highlighted a novel role for the transcriptional activator Sck1 as a key mediator in this mechanism.


Assuntos
Proteínas Fúngicas/genética , Proteínas Facilitadoras de Transporte de Glucose/genética , Glucose/metabolismo , Kluyveromyces/genética , Fatores de Transcrição/genética , Anaerobiose , Regulação Fúngica da Expressão Gênica , Glicólise , Kluyveromyces/metabolismo , Mutação , Transdução de Sinais
3.
Front Microbiol ; 10: 327, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30858840

RESUMO

The pathogenic yeast Candida albicans is both a powerful commensal and a pathogen of humans that can infect wide range of organs and body sites. Metabolic flexibility promotes infection and commensal colonization by this opportunistic pathogen. Yeast cell survival depends upon assimilation of fermentable and non-fermentable locally available carbon sources. Physiologically relevant sugars like glucose and fructose are present at low levels in host niches. However, because glucose is the preferred substrate for energy and biosynthesis of structural components, its efficient detection and metabolism are fundamental for the metabolic adaptation of the pathogen. We explored and characterized the C. albicans hexose kinase system composed of one hexokinase (CaHxk2) and two glucokinases (CaGlk1 and CaGlk4). Using a set of mutant strains, we found that hexose phosphorylation is mostly performed by CaHxk2, which sustains growth on hexoses. Our data on hexokinase and glucokinase expression point out an absence of cross regulation mechanisms at the transcription level and different regulatory pathways. In the presence of glucose, CaHxk2 migrates in the nucleus and contributes to the glucose repression signaling pathway. In addition, CaHxk2 participates in oxidative, osmotic and cell wall stress responses, while glucokinases are overexpressed under hypoxia. Hexose phosphorylation is a key step necessary for filamentation that is affected in the hexokinase mutant. Virulence of this mutant is clearly impacted in the Galleria mellonella and macrophage models. Filamentation, glucose phosphorylation and stress response defects of the hexokinase mutant prevent host killing by C. albicans. By contributing to metabolic flexibility, stress response and morphogenesis, hexose kinase enzymes play an essential role in the virulence of C. albicans.

4.
Sci Rep ; 7: 44533, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-28303916

RESUMO

Copper isotopic composition is altered in cancerous compared to healthy tissues. However, the rationale for this difference is yet unknown. As a model of Cu isotopic fractionation, we monitored Cu uptake in Saccharomyces cerevisiae, whose Cu import is similar to human. Wild type cells are enriched in 63Cu relative to 65Cu. Likewise, 63Cu isotope enrichment in cells without high-affinity Cu transporters is of slightly lower magnitude. In cells with compromised Cu reductase activity, however, no isotope fractionation is observed and when Cu is provided solely in reduced form for this strain, copper is enriched in 63Cu like in the case of the wild type. Our results demonstrate that Cu isotope fractionation is generated by membrane importers and that its amplitude is modulated by Cu reduction. Based on ab initio calculations, we propose that the fractionation may be due to Cu binding with sulfur-rich amino acids: methionine and cysteine. In hepatocellular carcinoma (HCC), lower expression of the STEAP3 copper reductase and heavy Cu isotope enrichment have been reported for the tumor mass, relative to the surrounding tissue. Our study suggests that copper isotope fractionation observed in HCC could be due to lower reductase activity in the tumor.


Assuntos
Carcinoma Hepatocelular/metabolismo , Cobre/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas Oncogênicas/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Ciclo Celular , Radioisótopos de Cobre/química , Radioisótopos de Cobre/metabolismo , Transportador de Cobre 1 , Fracionamento da Dose de Radiação , Células Eucarióticas/metabolismo , Células Eucarióticas/patologia , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas Oncogênicas/metabolismo , Oxirredutases/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Enxofre/química
5.
Mol Syst Biol ; 11(4): 802, 2015 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-25888284

RESUMO

Cells react to nutritional cues in changing environments via the integrated action of signaling, transcriptional, and metabolic networks. Mechanistic insight into signaling processes is often complicated because ubiquitous feedback loops obscure causal relationships. Consequently, the endogenous inputs of many nutrient signaling pathways remain unknown. Recent advances for system-wide experimental data generation have facilitated the quantification of signaling systems, but the integration of multi-level dynamic data remains challenging. Here, we co-designed dynamic experiments and a probabilistic, model-based method to infer causal relationships between metabolism, signaling, and gene regulation. We analyzed the dynamic regulation of nitrogen metabolism by the target of rapamycin complex 1 (TORC1) pathway in budding yeast. Dynamic transcriptomic, proteomic, and metabolomic measurements along shifts in nitrogen quality yielded a consistent dataset that demonstrated extensive re-wiring of cellular networks during adaptation. Our inference method identified putative downstream targets of TORC1 and putative metabolic inputs of TORC1, including the hypothesized glutamine signal. The work provides a basis for further mechanistic studies of nitrogen metabolism and a general computational framework to study cellular processes.


Assuntos
Regulação Fúngica da Expressão Gênica , RNA Fúngico/biossíntese , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma , Causalidade , Ciclo Celular , Simulação por Computador , Meios de Cultura/farmacologia , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Metaboloma , Modelos Biológicos , Nitrogênio/metabolismo , Probabilidade , Proteoma , RNA Fúngico/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Transdução de Sinais
6.
Mol Cell Biol ; 35(4): 747-57, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25512610

RESUMO

Sensing of extracellular glucose is necessary for cells to adapt to glucose variation in their environment. In the respiratory yeast Kluyveromyces lactis, extracellular glucose controls the expression of major glucose permease gene RAG1 through a cascade similar to the Saccharomyces cerevisiae Snf3/Rgt2/Rgt1 glucose signaling pathway. This regulation depends also on intracellular glucose metabolism since we previously showed that glucose induction of the RAG1 gene is abolished in glycolytic mutants. Here we show that glycolysis regulates RAG1 expression through the K. lactis Rgt1 (KlRgt1) glucose signaling pathway by targeting the localization and probably the stability of Rag4, the single Snf3/Rgt2-type glucose sensor of K. lactis. Additionally, the control exerted by glycolysis on glucose signaling seems to be conserved in S. cerevisiae. This retrocontrol might prevent yeasts from unnecessary glucose transport and intracellular glucose accumulation.


Assuntos
Regulação Fúngica da Expressão Gênica , Glucose/metabolismo , Glicólise/genética , Kluyveromyces/metabolismo , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Biológico , Membrana Celular , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Retroalimentação Fisiológica , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Kluyveromyces/genética , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Eukaryot Cell ; 11(11): 1382-90, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23002104

RESUMO

In Kluyveromyces lactis, the expression of the major glucose permease gene RAG1 is controlled by extracellular glucose through a signaling cascade similar to the Saccharomyces cerevisiae Snf3/Rgt2/Rgt1 pathway. We have identified a key component of the K. lactis glucose signaling pathway by characterizing a new mutation, rag20-1, which impairs the regulation of RAG1 and hexokinase RAG5 genes by glucose. Functional complementation of the rag20-1 mutation identified the KlSNF2 gene, which encodes a protein 59% identical to S. cerevisiae Snf2, the major subunit of the SWI/SNF chromatin remodeling complex. Reverse transcription-quantitative PCR and chromatin immunoprecipitation analyses confirmed that the KlSnf2 protein binds to RAG1 and RAG5 promoters and promotes the recruitment of the basic helix-loop-helix Sck1 activator. Besides this transcriptional effect, KlSnf2 is also implicated in the glucose signaling pathway by controlling Sms1 and KlRgt1 posttranscriptional modifications. When KlSnf2 is absent, Sms1 is not degraded in the presence of glucose, leading to constitutive RAG1 gene repression by KlRgt1. Our work points out the crucial role played by KlSnf2 in the regulation of glucose transport and metabolism in K. lactis, notably, by suggesting a link between chromatin remodeling and the glucose signaling pathway.


Assuntos
Glucose/metabolismo , Glicólise , Kluyveromyces/metabolismo , Transdução de Sinais , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Transporte Biológico , Montagem e Desmontagem da Cromatina , Imunoprecipitação da Cromatina , Clonagem Molecular , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Redes Reguladoras de Genes , Genes Fúngicos , Teste de Complementação Genética , Kluyveromyces/enzimologia , Kluyveromyces/genética , Mutação , Regiões Promotoras Genéticas , Proteólise , Processamento Pós-Transcricional do RNA , RNA Fúngico/genética , RNA Fúngico/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional
8.
Mol Biol Cell ; 21(19): 3475-86, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20702584

RESUMO

Regulation of cell growth requires extensive coordination of several processes including transcription, ribosome biogenesis, translation, nutrient metabolism, and autophagy. In yeast, the protein kinases Target of Rapamycin (TOR) and protein kinase A (PKA) regulate these processes and are thereby the main activators of cell growth in response to nutrients. How TOR, PKA, and their corresponding signaling pathways are coordinated to control the same cellular processes is not understood. Quantitative analysis of the rapamycin-sensitive phosphoproteome combined with targeted analysis of PKA substrates suggests that TOR complex 1 (TORC1) activates PKA but only toward a subset of substrates. Furthermore, we show that TORC1 signaling impinges on BCY1, the negative regulatory subunit of PKA. Inhibition of TORC1 with rapamycin leads to BCY1 phosphorylation on several sites including T129. Phosphorylation of BCY1 T129 results in BCY1 activation and inhibition of PKA. TORC1 inhibits BCY1 T129 phosphorylation by phosphorylating and activating the S6K homolog SCH9 that in turn inhibits the MAP kinase MPK1. MPK1 phosphorylates BCY1 T129 directly. Thus, TORC1 activates PKA toward some substrates by preventing MPK1-mediated activation of BCY1.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Fosfoproteínas/metabolismo , Proteoma/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/enzimologia , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Sequência de Aminoácidos , Ativação Enzimática/efeitos dos fármacos , Marcação por Isótopo , Dados de Sequência Molecular , Fosfopeptídeos/química , Fosfopeptídeos/metabolismo , Fosforilação/efeitos dos fármacos , Fosfotreonina/metabolismo , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato/efeitos dos fármacos , Serina-Treonina Quinases TOR/antagonistas & inibidores , Fatores de Transcrição/metabolismo
9.
Curr Opin Cell Biol ; 21(6): 825-36, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19767189

RESUMO

The Target of Rapamycin (TOR), a protein kinase, is the central node of a highly conserved signaling network that regulates cell growth in response to nutrients, hormones, and stresses. TOR is found in two functionally distinct complexes, TORC1 and TORC2. In this review we address the most recent advances in TOR signaling in invertebrate model organisms, including yeasts, plants, worms, and insects.


Assuntos
Invertebrados/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Envelhecimento , Animais , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Modelos Biológicos
10.
Mol Cell ; 26(5): 663-74, 2007 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-17560372

RESUMO

The Target of Rapamycin (TOR) protein is a Ser/Thr kinase that functions in two distinct multiprotein complexes: TORC1 and TORC2. These conserved complexes regulate many different aspects of cell growth in response to intracellular and extracellular cues. Here we report that the AGC kinase Sch9 is a substrate of yeast TORC1. Six amino acids in the C terminus of Sch9 are directly phosphorylated by TORC1. Phosphorylation of these residues is lost upon rapamycin treatment as well as carbon or nitrogen starvation and transiently reduced following application of osmotic, oxidative, or thermal stress. TORC1-dependent phosphorylation is required for Sch9 activity, and replacement of residues phosphorylated by TORC1 with Asp/Glu renders Sch9 activity TORC1 independent. Sch9 is required for TORC1 to properly regulate ribosome biogenesis, translation initiation, and entry into G0 phase, but not expression of Gln3-dependent genes. Our results suggest that Sch9 functions analogously to the mammalian TORC1 substrate S6K1 rather than the mTORC2 substrate PKB/Akt.


Assuntos
Proteínas Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Sítios de Ligação , Genes Fúngicos , Complexos Multiproteicos , Mutagênese Sítio-Dirigida , Pressão Osmótica , Estresse Oxidativo , Fosforilação , Biossíntese de Proteínas , Proteínas Quinases/química , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Regulon , Fase de Repouso do Ciclo Celular , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Sirolimo/farmacologia , Temperatura , Vacúolos/metabolismo
12.
Cell ; 119(7): 969-79, 2004 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-15620355

RESUMO

The regulation of ribosome biogenesis in response to environmental conditions is a key aspect of cell growth control. Ribosomal protein (RP) genes are regulated by the nutrient-sensitive, conserved target of rapamycin (TOR) signaling pathway. TOR controls the subcellular localization of protein kinase A (PKA) and the PKA-regulated kinase YAK1. However, the target transcription factor(s) of the TOR-PKA pathway are unknown. We show that regulation of RP gene transcription via TOR and PKA in yeast involves the Forkhead-like transcription factor FHL1 and the two cofactors IFH1 (a coactivator) and CRF1 (a corepressor). TOR, via PKA, negatively regulates YAK1 and maintains CRF1 in the cytoplasm. Upon TOR inactivation, activated YAK1 phosphorylates and activates CRF1. Phosphorylated CRF1 accumulates in the nucleus and competes with IFH1 for binding to FHL1 at RP gene promoters, and thereby inhibits transcription of RP genes. Thus, we describe a signaling mechanism linking an environmental sensor to ribosome biogenesis.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Regulação Fúngica da Expressão Gênica , Fosfatidilinositol 3-Quinases/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas Ribossômicas/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Transporte Ativo do Núcleo Celular , Motivos de Aminoácidos , Núcleo Celular/metabolismo , Sequência Consenso , Fatores de Transcrição Forkhead , Genes Fúngicos/genética , Peptídeos e Proteínas de Sinalização Intracelular , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação/efeitos dos fármacos , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Regiões Promotoras Genéticas , Ligação Proteica/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas Ribossômicas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Sirolimo/farmacologia , Transativadores/antagonistas & inibidores , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética , Técnicas do Sistema de Duplo-Híbrido
13.
Mol Cell Biol ; 22(22): 7889-906, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12391157

RESUMO

In Saccharomyces cerevisiae, the WASP (Wiskott-Aldrich syndrome protein) homologue Las17p (also called Bee1p) is an important component of cortical actin patches. Las17p is part of a high-molecular-weight protein complex that regulates Arp2/3 complex-dependent actin polymerization at the cell cortex and that includes the type I myosins Myo3p and Myo5p and verprolin (Vrp1p). To identify other factors implicated with this complex in actin regulation, we isolated proteins that bind to Las17p by two-hybrid screening and affinity chromatography. Here, we report the characterization of Lsb7/Bzz1p (for Las seventeen binding protein 7), an Src homology 3 (SH3) domain protein that interacts directly with Las17p via a polyproline-SH3 interaction. Bzz1p coimmunoprecipitates in a complex with Las17p, Vrp1p, Myo3/5p, Bbc1p, Hsp70p, and actin. It colocalizes with cortical actin patches and with Las17p. This localization is dependent on Las17p, but not on F-actin. Bzz1p interacts physically and genetically with type I myosins. While deletion of BZZ1 shows no obvious phenotype, simultaneous deletion of the BZZ1, MYO3, and MYO5 genes is lethal. Overexpression of Bzz1p inhibits cell growth, and a bzz1Delta myo5Delta double mutant is unable to restore actin polarity after NaCl stress. Finally, Bzz1p in vitro is able to recruit a functional actin polymerization machinery through its SH3 domains. Its interactions with Las17p, Vrp1p, and the type I myosins are essential for this process. This suggests that Bzz1p could be implicated in the regulation of actin polymerization.


Assuntos
Actinas/metabolismo , Proteínas do Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Proteínas dos Microfilamentos/metabolismo , Miosina Tipo I/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Polaridade Celular , Proteínas do Citoesqueleto/genética , Genes Fúngicos , Genes Reporter , Substâncias Macromoleculares , Proteínas dos Microfilamentos/genética , Polímeros , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/genética , Tiazóis/farmacologia , Tiazolidinas , Técnicas do Sistema de Duplo-Híbrido , Proteína da Síndrome de Wiskott-Aldrich
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...